1(a). In a neutralisation reaction dilute sulfuric acid, H2SO4, reacts with potassium hydroxide solution, KOH.

$$H_2SO_4 + 2KOH \checkmark K_2SO_4 + 2H_2O$$

Calculate the mass of potassium sulfate, K₂SO₄, that could be made from 6.54 g of dilute sulfuric acid, H₂SO₄.

Give your answer to 3 significant figures.

Relative atomic mass (A_r): H = 1.0 K = 39.1 O = 16.0 S = 32.1

Mass of potassium sulfate = g [4]

(b). A student investigates the neutralisation reaction between sodium hydroxide solution and dilute hydrochloric acid.

They do a titration experiment.

The diagram shows the apparatus they use.

What is the name of the piece of equipment labelled X ?	
	[1]
(c). The student places the conical flask on a white tile.	
Explain why.	
	[1]

(d). The student adds the alkali to the acid drop by drop near the endpoint of the titration.	
Explain why.	
(e). The neutralisation reaction between sodium hydroxide solution, NaOH, and dilute hydrochloric acid, HCl, makes a salt and water.	
Write the balanced symbol equation for the reaction.	
[2	
2. Magnesium carbonate, MgCO ₃ , decomposes to make magnesium oxide, MgO.	
Carbon dioxide is a waste product.	
$MgCO_3 \rightarrow MgO + CO_2$	
Relative formula mass (M_r): MgO = 40.3 CO ₂ = 44.0	
What is the atom economy of the reaction?	
$atom economy = \frac{M_r \text{ of desired product}}{total M_r \text{ mass of all products}} \times 100$ Use the equation:	
A 47.8% B 52.2% C 91.6% D 109.0% Your answer	
Your answer [1]	
3. This is the equation for a reaction.	
NaOH + HC $I \rightarrow$ NaC I + H ₂ O	
i. What type of reaction is this?	
Tick (√) one box.	
Polymerisation Neutralisation Reversible Thermal decomposition	

ii. Water is a waste product in this reaction. Calculate the **atom economy** for the reaction. Relative atomic mass (A_r) : H = 1.0 O = 16.0 Na = 23.0 C/ = 35.5

Atom economy = % [3]

4. Iron reacts with dilute sulfuric acid, H₂SO₄.

Iron sulfate, FeSO₄, and hydrogen gas, H₂, are made.

i. Write the **balanced symbol** equation for this reaction.

_____[1]

ii. A student reacts 2.8 g of iron with dilute sulfuric acid.

The student makes 5.4 g of iron sulfate.

They predicted that they should have made 7.6 g of iron sulfate.

Calculate their percentage yield.

Give your answer to 1 decimal place.

Percentage yield of iron sulfate = % [3]

5. A student plans a titration experiment.

The diagram shows some of the apparatus they use.

The student writes their method.

- В Fill the burette with dilute hydrochloric acid. Record the initial reading on the burette.
- C Empty the sodium hydroxide solution from the pipette into a conical flask.
- D Stop adding the dilute hydrochloric acid when the indicator just changes colour.
- Ε Repeat these steps until you have two concordant results.
- F Use a pipette filler to fill a glass pipette with 25.0 cm³ of sodium hydroxide solution.
- G Add the dilute hydrochloric acid to the sodium hydroxide solution while swirling the conical flask.

The steps in the method are **not** in the correct order.

Write the letters in the boxes to show the correct order of the steps. The first and last steps have been filled in for you.

[4]

6. In an experiment, a teacher reacts 0.1 g of zinc with excess hydrochloric acid.

 $Zn + 2HCI \rightarrow ZnCI_2 + H_2$

Calculate the **mass** of hydrogen gas made.

Relative atomic mass (A_r): H = 1.0 Zn = 65.4

Mass of hydrogen gas = g [3]

7. Calcium carbonate, CaCO₃, thermally decomposes to make calcium oxide, CaO, and carbon dioxide.

 $CaCO_3 \rightarrow CaO + CO_2$

5.0 g of calcium carbonate makes 2.8 g of calcium oxide.

How much carbon dioxide is made?

- **A** 2.2 g
- **B** 2.8 g
- **C** 4.4 g
- **D** 7.8 g

Your answer [1]

END OF QUESTION PAPER